广告

LabVIEW开发绵阳中国燃气涡轮研究院项目,LabVIEW项目

LabVIEW开发绵阳中国燃气涡轮研究院项目,LabVIEW项目
收藏 分享
举报
价格 面议
起批量 ≥ 1件
供应商 北京瀚文网星科技有限责任公司
所在地 北京市昌平区
王经理

򈊡򈊣򈊦򈊩򈊡򈊢򈊠򈊣򈊧򈊦򈊡 򈊠򈊡򈊠-򈊨򈊡򈊧򈊤򈊧򈊧򈊡򈊨

微信在线

“LabVIEW开发绵阳中国燃气涡轮研究院项目,LabVIEW项目”详细信息
基本参数
联系人
王经理
手机
13691203761
面向地区
产品名称
LabVIEW开发,LabVIEW项目,LabVIEW编程,LabVIEW解密
关键词
LabVIEW在配套仪表中的应用,LabVIEW在导航仪器中的应用,LabVIEW在智能机电中的应用,LabVIEW在计算机测控系统中的应用

LabVIEW开发绵阳中国燃气涡轮研究院项目,LabVIEW项目

利用labview为太阳能车开发遥测系统
概述:使用1组NI CompactRIO控制器与8槽式机箱,监控车辆的电压、电流、温度,与速度,再透过2.4 GHz数据机,将资讯无线传送至太阳能车后方的追踪车辆。

遥测(Telemetry)
WSC 与其他太阳能车赛不同之处,乃是团队完成达尔文(Darwin) 到阿德雷得(Adelaide) 共3,000 公里的距离;亦表示比赛期间可能随时发生问题,甚至影响车辆能否完成赛事。使用CompactRIO 可重设机箱与NI LabVIEW 软体,我们开发的摇测系统可监控、记录,并传输资料,以随时反应太阳能电池的状态(如上图1 )。受监控的资料可触发警示,在问题发生之前避免之;因此该笔即时资料可协助团对随时拟定佳对策,以缩短除错时间。同时系统亦将监控并记录驾驶的动作,以利赛后分析。
研发
虽然太阳能车本身的机械与电力资料,即为搜集与分析要点,但由于电子资料才是打造车辆的关键比赛要素,所以我们额外注重电子资料。我们所搜集的资料,包含设计阶段的电池与太阳能电池,还有电池的体积与其效能曲线均有。在赛程中搜集到的即时资料,有助于我们佳化车辆的性能,亦可比较车辆实际规格与设计规格之间的差异。另外,策略团队则使用此资料搭配天气预测,以计算出理想的赛程速度。我们并透过CompactRIO 内建记忆体而记录所有资料,以利赛后分析并供未来改进之用。
使用CompactRIO 与可重设机箱
因为CompactRIO能在可客制化输入通道上整合即时资料撷取功能,亦可记录并传输资料,所以我们选用CompactRIO。而NI cRIO-9104 - 8槽式机箱可安装任何必要模组,以满足我们的监控需求。透过多款NI模组,我们可随着专案发展而调整机箱,并着重于太阳能车的不同面向。NI cRIO-9014 - Real-Time控制器另内建记忆体与多种I/O,可提供弹性介面与次要的资料储存媒体。
我们的客制化机箱包含1组SEA cRIO-GPS+模组,可即时提供车辆位置;1组NI 9870序列介面模组,具备RS232介面,可撷取电池监控系统的资料;1组NI 9401数位I /O模组,可透过马达控制器端点取得车辆速度,并输出资料;4个NI 9219类比I/O模组,可监控火星塞、刹车、电流,与太阳能电池阵列的电压;还有1个NI 9211热电偶模组,可感测车辆周围的温度。我们另透过NI 9219通用类比I/O模组,以高度与解析度监控多种资料,包含电压、电流、温度,与电阻。
利用LabVIEW FPGA Module 进行程式设计
使用LabVIEW FPGA Module即可迅速且轻松设计此系统。另外,Express VI具备捷径功能,可让使用者迅速变更程式以满足需求。此外,我们在启动CompactRIO时随即执行程式,让整个系统成为无线架构,而不需实际接至系统再手动开始程式。我们虽属业余团队且程式设计经验有限,但直觉且图形化的图示与接线,都让我们能加快程式设计的速度且趣味盎然。因为并非所有模组都支援CompactRIO的Scan Mode,所以我们透过FPGA程式设计模式,整合了共8个模组。我们检视由追踪车即时搜集的资料,再根据公式化的程式拟定比赛策略(图2)。

图2. 追踪车上的即时资料
应用
在专案设计阶段,我们使用CompactRIO 控制器记录太阳电池的效能,以建立电池于不同气候条件下的效能曲线。我们连接电池与系统,以了解不同温度下的放电情形,并于每次试驾时记录驾驶的动作,以协助团队判别驾驶行动是否正确。
因为车辆完全由太阳能供电,我们将电子设备的耗电量降至低,让马达获得大部分的电力,才能完成赛程。客制化的8 槽式机箱可撷取如GPS、电池资讯、太阳能电池状态、马达效能,与驾驶动作的资料。接着将所有资料储存于cRIO-9014 – Real-Time 控制器内建的2 GB 记忆体,同时透过LabVIEW VI 将资料格式化为字串,再透过低耗电的2.4 GHz 无线电数据机,将资料传输到追踪车上(图3)。

图3. 遥测系统的程式区块图

Real-Time 控制器具备足够的储存空间,追踪车上亦装备1 组笔记型电脑。策略团队在追踪车上分析资料,并参考如道路、驾驶,与天候状况的外部因素,以决定车行速度。
完成所有试驾之后,我们接着分析资料并微调太阳能车的机械元件,如调整车轮、转向灵敏度、悬吊,与胎压,以提升太阳能车的性能。透过LabVIEW,我们可模拟澳洲所有的可能天候状况,这样我们更能有效评估太阳能阵列所提供的电力与功率。此外,我们也会在赛事过后分析所得的资料,以进一步强化新一代的太阳能车。
结论
因为我们在这个专案使用即时监测系统,且太阳能车所能提供的资料范围太过广泛,所以我们初并无法确定主要的焦点为何。随着专案的进展,我们于竞赛与设计阶段,均透过CompactRIO 绘制出电池在不同温度下的放电率图表,并借以了解自制太阳能矩阵的效能。本专案从设计、实际比赛,到后续分析的所有阶段,CompactRIO 实在助益良多。我们成功使用CompactRIO 为太阳能车开发了监控系统,且针对未来的更多太阳能专案,我们亦准备继续使用相同的机箱与控制器。

利用下一代医学成像技术以及PXI模块化仪器系统与NI LabVIEW进行进展性癌症研究
概述:使用OCT技术与授予专利的光源技术,并通过带有32个PXI-5105数字化仪的256同步通道的高速(60Ms/s)数据采集系统予以实现。

OCT是一种非入侵式成像技术,它提供半透明或不透明的材料的表下、断层图像。OCT图像使我们可以以与一些显微镜相近的精度可视化地展现组织或其他物体。OCT越来越受到研究人员的关注,因为它具有比核磁共振成像(MRI)和正电子发射型断层成像(PET)等其他成像技术高很多的分辨率。此外,该方法不要求我们作其他准备,而且对于患者非常安全,因为我们使用的激光输出能量非常之低并且无需使用电离辐射。
OCT利用一个低功耗光源及其相应的光反射以创建图像,该方法类似于超声,但我们监测的是光波,而不是声波。当我们将一束光投射在一个样品上,其中大部分光线被散射,但仍有小部分光线以平行光的形式反射,这些平行光可以被检测到并用于创建图像。
别系统概览
我们的任务便是利用光学解复用器创建一个高速傅立叶域OCT系统,以支持来自以192.2 THz为中心频率、频率间隔为25.0 GHz的宽带入射光(波长为1559.8 nm)的256个窄频带的分隔。频谱分离使得PXI-5105数字化仪的256个高速模数转换器(ADC)通道能以60 MS/s的采样率进行数据采集,并对所有的频带进行同步检测。
我们的系统包含32块8通道的PXI-5105数字化仪,它们分布在三个18槽的NI PXI-1045机箱上。我们利用NI PXI-6652定时与同步模块和NI-TClk同步技术,实现不同机箱上的数字化仪的同步,它提供了数十皮秒精度级的通道间相位同步性。我们选用PXI-5105是因为其高通道密度——每块板卡八个输入通道,这样使得256个高速通道的系统保持较小的外形尺寸。当我们完成数据采集之后,我们利用LabVIEW进行数据处理和可视化展示。
利用傅立叶域OCT系统中的光解复用器充当频谱分析仪,实现了每秒六千万次轴向扫描的OCT成像。利用一台共振扫描装置进行帧速率为16 kHz、每帧1400 A-线和3毫米深度范围的左右扫查,我们的OCT成像展示了23 µm的精度。
系统深度描述
在我们的系统中,所采用的光源是一个宽带超发光二极管(SLD,由NTT电子提供原型产品)。我们利用一个半导体光放大器(SOA,来自COVEGA公司,BOA-1004型)放大该SLD的输出光信号,并利用耦合器(CP1)将其等分导入到样本支路和参考支路。我们调整SOA1的输出光信号强度,使得样本信号的功率为9 mW,以满足ANSI的安全限制。我们的系统利用一个准直透镜(L1)和一个物镜(L2),将样本支路光信号导入到采样点(S)。我们使用一个共振扫描装置(RS、光电产品、SC-30型)和一个电镜(G,剑桥技术出品,6210型)扫描采样点的光束。我们的系统利用光照明光学收集来自采样点的后向散射或后向发射的光信号,并利用一个光循环装置C1将其导入至SOA2(来自COVEGA公司,BOA-1004型)。我们通过一个耦合器CP2(耦合比为50:50)整合SOA2的输出信号与参考光信号。该参考支路由光循环装置C2、准直透镜L3和参考反射镜RM组成。
我们的系统利用两只光解复用器(OD1与OD2)分离CP2的输出信号,以实现平衡检测。它利用平衡图片接收装置(来自New Focus公司,2117型)——共有256个图片接收装置,检测来自这两个OD的具有相同光频率的输出信号。它利用前述快速多通道ADC系统的32块PXI-5105数字化仪,检测来自图片接收装置的输出信号。所采集数据在单次采集过程中存储于数字化仪的板载深度存储器中,然后传输至计算机供分析。
就同步检测干涉频谱而言,OD-OCT与SD-OCT相似。其差别在于OD-OCT同时在不同频率以数据采集速率检测整个干涉图谱,而不是像SD-OCT那样——在某个时间跨度内累计输入到CCD检测装置中。因而,它根据数据采集系统的数据采集速率——在现有系统中该速率高达60 MHz——来确定轴向扫描速率。共振扫描装置的16 kHz速率确定了帧速率。我们仅使用了一个扫描方向进行数据采集(50%的占空比),从而得到每帧的采样时间为31.25 μs。该系统在每帧中获得1875次轴向扫描;然而,由于共振扫描装置的左右扫查呈高度非线性,我们仅使用了1400次轴向扫描,舍弃了475次轴向扫描。
研究结果
我们将动态范围定义为点扩散函数(PSF)的峰值与样本支路畅通时的背景噪声间的比值。我们根据结果估计,动态范围在各种深度下均约为40 dB并随着深度加深略有下降。OD-OCT的一个技术优势在于AWG的每个通道所检测的频带宽度小于25 GHz的频率间距。40 dB的动态范围基本足够生物组织的测量。
我们利用中性密度滤光镜将发射光衰减了39.3 dB。粗实曲线是在阻塞样本光信号的情况下测量所得的背景噪声。由这些数值确定的敏感度按照右手侧的垂直刻度标示。
图像的渗入深度约1毫米,浅于通常利用SS-OCT或SD-OCT获得的2毫米渗入深度。这是由低敏感度决定的。为得到一幅3D图像,需要大量的OCT截面。受限于存储器的大小,我们把采样率降至10 MHz。

我们使用 NI LabVIEW 与 NI TestStand 开发灵活的软件架构,以解决目前及未来的测试需求。这套软件的功能众多,能够测试不同版本的产品,以及开放式与封闭式硬件。使用 NI TestStand,我们可以利用商业可用的测试执行功能来节省开发时间。
使用定制化的操作界面,操作员可以登陆、载入选出的测试序列,然后监控测试过程。界面也会提供即时资料更新给操作员、生成测试报告,然后将所有的测试资讯记录到资料库中,供日后分析之用。我们在 LabVIEW 中撰写个别的测试,这也可以节省开发时间,因为我们拥有庞大的函数库可以测量、与硬件连接、分析结果,以及显示。通过模块化操作界面进行序列控制,并将其与个别测试模块分开,我们便能将开发的成果使用于更多有类似测试需求的产品上。以统一的格式记录所有的数据,我们的研发与生产工程师就能进行分析并找出趋势,并制作生产收益的报告。他们也会使用数据分析失败原因,并在设备制造的过程中找出待改进之处。记录中拥有所有的测试资料,包含使用的序列、参数、测试仪器的校正日期、测试时间,以及产品的通过 / 失败状态。

撷取的资料暂时储存在CompactRIO 的内部快闪硬碟中,然后透过无线连结自动下载到主要伺服器中,资料在主要伺服器中处理、与更多复杂的警报参数比较,然后储存在资料库中。如果无法无线连结到伺服器时,使用者可以透过短程、点对点的无线连结(使用者靠近机器铲以建立连结) 连上并手动下载资料;接上乙太网路连接线,或是在CompactRIO的USB 插槽上插入随身碟,资料便会自动上传。<0}
资料一旦处理储存好了,就可以供下列之用:使用者视觉化、分析、手动处理,以及在伺服器上进行趋势管理,或是有网路可存取资料库的电脑,也可进行趋势管理。所有的组态、资料移转、处理、视觉化与分析软体都充分内建在LabVIEW 里。

使用LabVIEW FPGA和CompactRIO开发伺服控制系统
概述:利用NI LabVIEW FPGA 模块和CompactRIO 系统开发出世界上台在连续旋转式磁盘上进行三维全息数字数据存储的伺服控制系统。

全息数字数据存储(Holographic digital data storage,简称HDDS)技术是光学存储领域里有前景的新兴技术之一。传统的数据存储技术,是把单的比特信息存储为介质表面的磁或光变量,正在接近其物理的极限。然而,全息存储技术可以使数据的传输速率加速到10 亿比特每秒,把访问时间降低到几十微秒,同时将数据的存储密度增加到理论的大值,即1 万亿比特每立方厘米。  
通过在存储介质的整个三维空间上编码数据,并且利用称为页的大容量并行存储块来进行记录和恢复,全息数据存储技术突破了传统二维技术(如DVD)的限制。

利用CompactRIO 对Daewoo HDDS 系统进行原型验证
我们的H D D S 原型包括两个主要的子系统:一个基于N ICompactRIO三百万门的FPGA 系列模块的电光运动控制系统和一个基于Xilinx 公司八百万门的FPGA 电路板的视频解码系统。CompactRIO 系统控制着一个线性电机、一个步进电机、一个电流镜和一个CMOS 相机。每一个运动控制环都要求的控制,所以我们利用反馈信号来控制和检测数据。不同于传统的计算型电路板,CompactRIO 系统使我们可以利用NI 公司的LabVIEWFPGA模块来定制脉冲发生器的时序,其精度可达到一个FPGA时钟周期。为了避免滑动,我们通过创建定制的用于加速和减速的数学函数,开发了复杂的电机控制算法。我们为三种类型的电机分别设计了驱动电路,并把它们连接到CompactRIO 的输入/ 输出模块上。除了运动控制,CompactRIO 还与用于视频解码的FPGA 电路板通信,该电路板是使用我们自有的用于视频恢复和CMOS相机控制的信号处理技术开发的。前端MPEG解码器积累在缓存中的数据量随速度变化很大,CompactRIO 还通过检查其变化来控制数据的传输速率。
使用LabVIEW测量内燃机气缸压力
概述:基于LabVIEW软件控制的DAQ板卡,开发出OPTIMIZER——一款灵活、经济的基于PC的气缸压力测量分析系统。

背景
内燃机的性能,取决于许多因素。对于给定压缩比的情况,佳马力和发动机扭矩会出现在以下情况:
 每个气缸的进气口和进气阀的进气量均达到大
 燃料/空气处于适当比例
 燃料和空气充分混合
 调整点火提前量,避免初始爆震
由于是燃料/空气混合物的燃烧产生的压力产生了发动机的扭矩和动力,所以在发动机研发中重要的检查参数就是在压缩和做功冲程中的气缸压力大小及其定时。进气歧管的台架测试是在恒流情况下记录一定压降下的气流情况。但当安装在发动机上后,进气歧管的气流就变成了受活塞运动、进气阀面积、气阀定时和重叠时间以及流道形状影响的非恒流过程。这些参数的共同作用,往往会导致多缸发动机不同气缸进气差异。
优化发动机性能的步就是设计进气歧管和气阀系以大限度的给每一个气缸提供等量空气。对于给定的压缩比和进气口温度,操作者可以通过测量点火之前压缩冲程中的气缸压力来获得进气信息。因为油气混合物的燃烧是一个复杂的反应过程,牵涉到很多气缸的几何因素以及其它因素,如油气混合情况、汽油辛烷值、燃料当量比、发动机温度、空气温度和湿度,以及点火时间等—— 调整这些参数,以获得佳的性能,将是一个相当大的挑战。
通过观察气缸压力测量值以及峰值压力相对活塞顶死中心(Top-dead-center, TDC)的位置,发动机技术人员可以迅速将发动机调校到佳性能。由燃烧质量分数可见,对于大多数传统发动机而言,如果峰值压力出现在TDC之后12到15度,并且燃烧发生在TDC附近的等容阶段时,发动机将表现出佳性能。但在给定压缩比和燃油辛烷值情况下,为了达到佳性能所采取的点火提前可能会因为严重的火花爆击现象而导致气阀过热。因此,在性能优化过程中,发动机技术人员需要检测TDC之后的10和40度之间火花爆击的气缸压力。如果检测到爆震,点火提前取消,以避免活塞受损。

联系我时,请说是在黄页88网宁波应用软件栏目上看到的,谢谢!

优质宁波应用软件信息推荐

留言板

  • LabVIEW开发LabVIEW项目LabVIEW编程LabVIEW解密LabVIEW在配套仪表中的应用LabVIEW在导航仪器中的应用LabVIEW在智能机电中的应用LabVIEW在计算机测控系统中的应用
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

北京瀚文网星科技有限责任公司

地址:北京市昌平区

最新应用软件信息

“LabVIEW开发绵阳中国燃气涡轮研究院项目,LabVIEW项目”信息由发布人自行提供,其真实性、合法性由发布人负责。交易汇款需谨慎,请注意调查核实。