亚兰10-30强度95灰分3碘值500-1500比表面积1500
储能活性炭具有广泛的应用范围,包括但不限于以下几个方面:
1. 超级电容器:在超级电容器中,储能活性炭作为电极材料,能够提供高比表面积和良好的导电性,实现快速的电荷存储和释放,具有高功率密度和长循环寿命的特点。
2. 锂离子电池:可用于锂离子电池的负极材料或作为添加剂,改善电池的性能,如提高比容量、循环稳定性等。
3. 新能源储能系统:在大规模的新能源储能系统,如风力发电、太阳能发电的储能环节中发挥作用,平衡能源的供需。
4. 混合动力汽车:作为车载储能装置的一部分,有助于提高车辆的能源利用效率和性能。
5. 不间断电源(UPS):为 UPS 系统提供可靠的储能支持,确保在电力中断时能够持续供电。
6. 智能电网:参与智能电网的能量存储和调配,提高电网的稳定性和可靠性。
7. 便携式电子设备:如手机、平板电脑、笔记本电脑等,提供稳定的电源支持。
8. 轨道交通:用于轨道交通系统的能量回收和存储,降低能耗。

储能活性炭的生产工艺通常包括以下主要步骤:
1. 原料选择:选用具有高含碳量、低灰分和低杂质的原材料,如煤炭、木材、椰壳、果壳等。
2. 预处理:对原料进行破碎、筛选、干燥等预处理,以获得合适的粒度和水分含量。
3. 炭化:在缺氧或惰性气氛下,将预处理后的原料加热至一定温度(通常在 400 - 600°C),使有机物质分解并转化为炭。
4. 活化:这是关键步骤。常用的活化方法有化学活化和物理活化。
- 化学活化:将炭化料与化学活化剂(如氢氧化钾、磷酸等)混合,在一定温度下反应,使炭材料形成丰富的孔隙结构。
- 物理活化:通常使用水蒸气或二氧化碳等气体在高温(800 - 1000°C)下与炭化料进行反应,刻蚀炭材料,产生孔隙。
5. 洗涤和净化:去除残留的活化剂和杂质。
6. 干燥:将活化后的活性炭进行干燥,以控制水分含量。
7. 粉碎和筛分:根据需要将活性炭粉碎并筛分成不同的粒度。
8. 质量检测:对成品活性炭的比表面积、孔隙结构、碘吸附值、亚甲蓝吸附值等性能指标进行检测,以确保其符合储能应用的要求。
在生产过程中,控制温度、时间、活化剂用量等参数对于获得的储能活性炭至关重要。不同的原料和生产工艺条件会影响活性炭的孔隙结构和性能,从而影响其在储能领域的应用效果。

储能活性炭,具有发达的中孔结构和发达的比表面积,吸附容量大、过滤速度快,不含锌盐之特性。广泛适用于食品工业的糖类、谷氨酸及盐,及盐、柠檬酸及盐,葡萄酒,调味品,动植物蛋白、生化制品、医药中间体、维生素、抗生素等产品的脱色、精制、除臭、去杂。
吸附能力吸附分液相吸附和气相吸附两类,液相吸附能力常以吸附等温线进行评价,气相吸附能力以溶剂蒸气吸附量评价。
吸附等温线表示一定温度下吸附系统中被吸附物质的分压或浓度与吸附量之间的关系,即当保持温度不变,可测得平衡吸附量和分压或浓度间的变化关系。以剩余浓度为横轴,以活性炭单质量的吸附量为纵轴可绘出关系曲线。
当保持分压或浓度不变,可测得平衡吸附量和温度间的变化关系,绘出关系曲线,即吸附等压线。由于在工业装置中少量成分吸附大致在等温状态下进行,所以吸附等温线为重要和常用。
溶剂蒸气吸附量表示气相吸附性能,可用颗粒活性炭的吸附率的测定为例,在规定的试验条件下,即规定的炭层高度、气流比速、吸附温度、测定管截面积、蒸气浓度的条件下,持含有一定蒸气浓度的混合空气流不断地通过活性炭,当达到吸附饱和时,活性炭试样所吸附的的质量与试样质量之百分比作为的吸附率。
储能活性炭应用中对于吸附能力,好用实际拟用的活性炭、操作的条件、具体的处理物进行评价测试。
储能活性炭在处理水中突发嗅味、工业污染物方面有很好的应用。在使用粉末炭时,根据所要去除污染物的种类和浓度进行吸附试验,以确定活性炭种类和所需的粉炭量。投末炭之前,应注意先将炭粉制成炭浆定量均匀的加入水中,接触时间越长,除污染效果越好。在粉末炭的使用过程中还应注意以下安全问题;当粉尘浓度达到一定比例时遇明火易发生,故操作间禁止吸烟、火花及明火;应避免与氧化剂混放;由于粉末炭颗粒小、轻,在使用时应注意粉尘污染,操作员须配备防尘口罩,避免吸入肺中。
生产的针剂炭,杂质少、纯度高、滤速快、具有优良的脱色、净化、提纯等性能,主要用于各种脱色、精制和除去“热源”。脱色好,脱色力强、滤速快、适用水处理脱色、精制。